Bifurcations of Traveling Wave Solutions for a Class of Nonlinear Evolution Equations
نویسنده
چکیده
By using the bifurcation theory of planar dynamical systems to a class of nonlinear evolution equations, the existence of traveling wave solutions is showed. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Explicit exact parametric representations of some traveling wave solutions are obtained.
منابع مشابه
Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
متن کاملNew study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملConstructing Infinite Number of Exact Traveling Wave Solutions of Nonlinear Evolution Equations Via an Extended Tanh–Function Method
Abstract: Two class of fractional type solutions of Riccati equation are constructed from its three known solutions. These fractional type solutions are used to propose an approach for constructing infinite number of exact traveling wave solutions of nonlinear evolution equations by means of the extended tanh–function method. The infinite number of exact traveling wave solutions of the long–sho...
متن کامل